// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用: intbSearch(int l, int r){ while (l < r){ int mid = l + r >> 1; if (check(mid)) r = mid; // check()判断mid是否满足性质 else l = mid + 1; } return l; } // 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用: intbSearch(int l, int r){ while (l < r){ int mid = l + r + 1 >> 1; if (check(mid)) l = mid; else r = mid - 1; } return l; }
// C = A - B, 满足A >= B, A >= 0, B >= 0, 判断大小 长度-字典序 vector<int> sub(vector<int> &A, vector<int> &B){ vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ){ t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; }
// C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> &A, int b){ vector<int> C; int t = 0; for (int i = 0; i < A.size() || t; i ++ ){ if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; }
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C; }
高精度除以低精度
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// A / b = C ... r, A >= 0, b > 0 vector<int> div(vector<int> &A, int b, int &r){ vector<int> C; r = 0; for (int i = A.size() - 1; i >= 0; i -- ){ r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
前缀和&差分
一维前缀和
已知一维数组,计算某个区间的和
1 2 3 4 5 6 7 8 9
int a[N]; // 原数组 下标从1开始,方便计算 int S[N]; // 前缀和数组 int l, r; // 区间的左右坐标
// 二分求出x对应的离散化的值 intfind(int x)// 找到第一个大于等于x的位置 { int l = 0, r = alls.size() - 1; while (l < r) { int mid = l + r >> 1; if (alls[mid] >= x) r = mid; else l = mid + 1; } return r + 1; // 映射到1, 2, ...n }
int st = -2e9, ed = -2e9; for (auto seg : segs) if (ed < seg.first) { if (st != -2e9) res.push_back({st, ed}); st = seg.first, ed = seg.second; } else ed = max(ed, seg.second);
if (st != -2e9) res.push_back({st, ed});
segs = res; }
// ======== by Xucong 贪心 ========
structInterval{// 可以使用vector代替,sort比较vector的第一个元素 int l, r; booloperator<(const Interval & t){ return l < t.l; } };